一、前言
在互联网应用中,缓存成为高并发架构的关键组件。本文主要介绍缓存使用的典型场景、实操案例分析、Redis使用规范及常规Redis监控。
二、常见缓存对比
常见的缓存方案:本地缓存包括HashMap/ConcurrentHashMap、Ehcache、Memcache、Guava Cache等,缓存中间件包括Redis、Tair等。
三、Redis使用场景
Redis实现快速计数及缓存功能。
例如:视频或直播在线观看人数,用户每播放一次,就会自增1。
Session可以存储在应用服务是JVM中,但这一种方案会有一致性的问题,还有高并发下,会引发JVM内存溢出。Redis将用户的Session集中管理,这种情况下只要保证Redis的高可用和扩展性,每次用户更新或查询登录都直接从Redis中信息获取。
例如:高并发的秒杀活动,使用incrby命令实现原子性递增。
例如:业务要求用户一分钟内,只能获取5次验证码。
关系型数据库在排行榜方面查询速度普遍偏慢,所以可以借助redis的SortedSet进行热点数据的排序。
比如在项目中,如果需要统计主播的吸金排行榜,可以以主播的id作为member, 当天打赏的活动礼物对应的热度值作为 score, 通过zrangebyscore就可以获取主播活动日榜。
在实际的多进程并发场景下,使用分布式锁来限制程序的并发执行。多用于防止高并发场景下,缓存被击穿的可能。
分布式锁的实际就是"占坑",当另一个进程来执行setnx时,发现标识位已经为1,只好放弃或者等待。
四、案例解析
Redis所有的数据结构,都可以设置过期时间。如果一个字符串已经设置了过期时间,然后重新设置它,会导致过期时间消失。所以在项目中需要合理评估Redis容量,避免因为频繁set导致没有过期策略,间接导致内存被占满。
如下是 Redis 源码截图:
发现Jedis在进行expiredAt命令调用时有bug,最终调用的是pexpire命令,这个bug会导致key过期时间很长,导致Redis内存溢出等问题。建议升级到Jedis 2.9.1及以上版本。
BinaryJedisCluster.java源码如下:
@Override
public Long pexpireAt(final byte[] key, final long millisecondsTimestamp) {
return new JedisClusterCommand<Long>(connectionHandler, maxAttempts) {
@Override
public Long execute(Jedis connection) {
return connection.pexpire(key, millisecondsTimestamp); //此处pexpire应该是pexpireAt
}
}.runBinary(key);
}
对比pexpire和pexpireAt:
比如我们当前使用的时间是2018-06-14 17:00:00,它的unix时间戳为1528966800000毫秒,当我们使用PEXPIREAT命令时,由于是过去的时间,相应的key会立即过期。
而我们误用了PEXPIRE命令时,key不会立即过期,而是等到1528966800000毫秒后才过期,key过期时间会相当长,约几W天后,从而可能导致Redis内存溢出、服务器崩溃等问题。
缓存的key有过期策略,如果恰好在这个时间点对这个Key有大量的并发请求,这些请求发现缓存过期一般都会从后端DB回源数据并回设到缓存,这个时候大并发的请求可能会瞬间把后端DB压挂。
业界常用优化方案有两种:
第一种:使用分布式锁,保证高并发下,仅有一个线程能回源后端DB;
第二种:保证高并发的请求到的Redis key始终是有效的,使用非用户请求回源后端,改成主动回源。一般可以使用异步任务进行缓存的主动刷新。
Redis执行命令select 0和select 1切换,造成性能损耗。
RedisTemplate在执行execute方法的时候会先获取链接。
执行到RedisConnectionUtils.java,会有一段获取链接的方法。
JedisConnectionFactory.java 会调用
JedisConnection构造器,注意这边的dbIndex就是数据库编号,如:1
继续跟进JedisConnection代码,当选择库大于1时,会有select db操作。如果一直使用0库是不需要额外执行切库命令的。知道了第一个切库select 1的地方,那么select 0是哪来的呢?
其实客户端使用Redis也会是要释放链接的,只不过RedisTemplate已经帮我们自动释放了,让我们再回到一开始RedisTemplate执行execute(...)方法的地方。
下面还是RedisConnectionUtils.java,执行链接关闭的代码。
按代码注释的意思,如果选择库编号不为0,spring-data-redis框架每次都会执行重置select 0!
笔者在vivo商城业务中,商品详情页接口经过上面的调优,性能提高了3倍多。
进一步验证数据库切换至少影响性能3倍左右(视具体业务而定)。
Rediscluster集群数据库,默认0库,无法选择其他数据库,也就避免了这个问题。
Redis是单线程的,所以线程安全的。
Redis使用非阻塞IO,并且大部分命令的时间复杂度O(1)。
使用高耗时的命令是非常危险的,会占用唯一的一个线程的大量处理时间,导致所有的请求都被拖慢。
例如:获取所有set集合中的元素 smembers myset,返回指定Hash中所有的member,时间复杂度O(N)。
缓存的Value集合变大,当高并接口请求时,会从Redis读取相关数据,每个请求读取的时间变长,不断的叠加,导致出现热点KEY情况,Redis某个分片处于阻塞,CPU使用率达到100%。
在Redis中,访问频率高的key称为热点key,当某一热点key的请求到Server主机时,由于请求量特别大,导致主机资源不足,甚至宕机,影响正常的服务。
热key问题的产生,有如下两种原因:
用户消费的数据远大于生产的数据,比如热卖商品或秒杀商品、热点新闻、热点评论等,这些典型的读多写少的场景会产生热点问题;
请求分片集中,超过单Server的性能极限,比如 固定名称key,哈希落入一台Server,访问量极大的情况,超过Server极限时,就会导致热点Key问题的产生。
那么在实际业务中,如何识别到热点key呢?
凭借业务经验,进行预估哪些是热key;
客户端统计收集,本地统计或者上报;
如果服务端有代理层,可以在代理层进行收集上报。
当我们识别到热key,如何解决热key问题?
Redis集群扩容:增加分片副本,均衡读流量;
进一步对热key进行散列,比如将一个key备份为key1,key2……keyN,同样的数据N个备份,N个备份分布到不同分片,访问时可随机访问N个备份中的一个,进一步分担读流量;
使用二级缓存,即本地缓存。
当发现热key后,将热key对应数据首先加载到应用服务器本地缓存中,减少对Redis的读请求。
五、Redis规范
说明:
Redis-standalone架构,禁止使用Redis中的其他database。
原由:
为以后业务迁移 Redis Cluster 保持兼容性;
多个 database 用 select 切换时,更消耗CPU资源;
更易自动化运维管理,如 scan/dbsize 命令只用于当database;
部分 Redis Clients 因线程安全问题,不支持单实例多 database。
按业务功能命名key前缀,防止key冲突覆盖,推荐 用冒号分隔,例如,业务名:表名:id:,如 live:rank:user:weekly:1:202003。
Key的长度小于30个字符,Key名字本身是String对象,Redis硬编码限制最大长度512MB。
在Redis缓存场景,推荐Key都设置TTL值,保证不使用的Key能被及时清理或淘汰。
Key设计时禁止包含特殊字符,如空格、换行、单双引号以及其他转义字符。
单个Value大小必须控制10KB以内,单实例键个数过大,可能导致过期键的回收不及时。
set、hash、list等复杂数据类型,要尽量降低数据结构中的元素个数,建议个数不要超过1000。
推荐使用O(1)命令,如get scard等。
O(N)命令关注N的数量,如下命令需要对N值在业务层面做控制。
hgetall
lrange
smembers
zrange
例如:smember命令时间复杂度为O(n),当n持续增加时,会导致 Redis CPU 持续飙高,阻塞其他命令的执行。
说明:Pipeline是Redis批量提交的一种方式,也就是把多个命令操作建立一次连接发给Redis去执行,会比循环的单次提交性能更优。
Redis客户端执行一条命令分4个过程:发送命令 -> 命令排队 ->命令执行 -> 返回结果。
常用的mget、mset命令,有效节约RTT(命令执行往返时间),但hgetall并没有mhgetall,是不支持批量操作的。此时,需要使用Pipeline命令
例如:直播中台项目中,需要同时查询主播日、周、月排行榜,使用PIPELINE一次提交多个命令,同时返回三个榜单数据。
禁止使用Monitor
禁止生产环境使用monitor命令,monitor命令在高并发条件下,会存在内存暴增和影响Redis性能的隐患
禁止使用Keys
keys操作是遍历所有的key,如果key非常多的情况下导致慢查询,会阻塞其他命令。所以禁止使用keys及keys pattern命令。
建议线上使用scan命令代替keys命令。
禁止使用Flushall、Flushdb
删除Redis中所有数据库中的所有记录,并且该命令是原子性的,不会终止执行,一旦执行,将不会执行失败。
禁止使用Save
阻塞当前redis服务器,直到持久化操作完成为止,对于内存较大的实例会造成长时间的阻塞
BGREWRITEAOF
手动AOF,手动持久化对于内存较大的实例会造成长时间的阻塞
Config
Config是客户端配置方式,不利于Redis运维。建议在Redis配置文件中设置。
六、Redis监控
方法一:slowlog获取慢查询日志
127.0.0.1:{port}> slowlog get 5
1) 1) (integer) 47
2) (integer) 1533810300
3) (integer) 175833
4) 1) "DEL"
2) "spring:session:expirations:1533810300000"
2) 1) (integer) 46
2) (integer) 1533810300
3) (integer) 117400
4) 1) "SMEMBERS"
方法二:更全面的慢查询可以通过CacheCloud工具监控。
路径:"应用列表"-点击相关应用名-点击"慢查询"Tab页。
点击"慢查询",重点关注慢查询个数及相关命令。
由于Redis是单线程,重点监控Redis实例绑定的CPU核心使用率。
一般CPU资源使用率为10%左右,如果使用率高于20%时,考虑是否使用了RDB持久化。
当前redis-cluster架构模式,3个master和3个Slave组成的集群,关注 Redis-cluster每个分片requests流量均衡情况;
通过命令获取:
redis-cli -p{port} -h{host} --stat
一般情况,超过12W需要告警。
通过Redis提供的工具,redis-cli定时扫描相应Redis大Key,进行优化。
具体命令如下:
redis-cli -h 127.0.0.1 -p {port} --bigkeys
或
redis-memory-for-key -s {IP} -p {port} XXX_KEY
一般超过10K为大key,需要重点关注,建议从业务层面优化。
Info memory 命令查看,避免在高并发场景下,由于分配的MaxMemory被耗尽,带来的性能问题。
重点关注 used_memory_human 配置项对应的value值,增量过高时,需要重点评估。
七、总结
结合具体业务特性,合理评估Redis所需内存容量、选择数据类型、设置单key大小,才能更好地服务于业务,为业务提供高性能的保障。
作者丨Jessica Chen
如果字段的最大可能长度超过255字节,那么长度值可能…
只能说作者太用心了,优秀
感谢详解
一般干个7-8年(即30岁左右),能做到年入40w-50w;有…
230721