Redis常见延迟问题排查手册!附33条优化建议

Kaito 2020-09-22 10:48:42

作者介绍

Kaito,90 后,坐标北京,6 年+工作经验,就职于一家移动互联网公司,目前从事基础架构和数据库中间件研发。

 

Redis作为内存数据库,拥有非常高的性能,单个实例的QPS能够达到10W左右。但我们在使用Redis时,经常时不时会出现访问延迟很大的情况,如果你不知道Redis的内部实现原理,在排查问题时就会一头雾水。

 

很多时候,Redis出现访问延迟变大,都与我们的使用不当或运维不合理导致的。

 

Redis变慢了?常见延迟问题定位与分析

 

下面我们就来分析一下Redis在使用过程中,经常会遇到的延迟问题以及如何定位和分析。

 

使用复杂度高的命令
 

 

如果在使用Redis时,发现访问延迟突然增大,如何进行排查?

 

首先,第一步,建议你去查看一下Redis的慢日志。Redis提供了慢日志命令的统计功能,我们通过以下设置,就可以查看有哪些命令在执行时延迟比较大。

 

首先设置Redis的慢日志阈值,只有超过阈值的命令才会被记录,这里的单位是微妙,例如设置慢日志的阈值为5毫秒,同时设置只保留最近1000条慢日志记录:

 

 

# 命令执行超过5毫秒记录慢日志

CONFIG SET slowlog-log-slower-than 5000

# 只保留最近1000条慢日志

CONFIG SET slowlog-max-len 1000

 

设置完成之后,所有执行的命令如果延迟大于5毫秒,都会被Redis记录下来,我们执行SLOWLOG get 5查询最近5条慢日志:

 

 

127.0.0.1:6379> SLOWLOG get 5

1) 1) (integer) 32693       # 慢日志ID

   2) (integer) 1593763337  # 执行时间

   3) (integer) 5299        # 执行耗时(微妙)

   4) 1) "LRANGE"           # 具体执行的命令和参数

      2) "user_list_2000"

      3) "0"

      4) "-1"

2) 1) (integer) 32692

   2) (integer) 1593763337

   3) (integer) 5044

   4) 1) "GET"

      2) "book_price_1000"

...

 

通过查看慢日志记录,我们就可以知道在什么时间执行哪些命令比较耗时,如果你的业务经常使用O(n)以上复杂度的命令,例如sort、sunion、zunionstore,或者在执行O(n)命令时操作的数据量比较大,这些情况下Redis处理数据时就会很耗时。

 

如果你的服务请求量并不大,但Redis实例的CPU使用率很高,很有可能是使用了复杂度高的命令导致的。

 

解决方案就是,不使用这些复杂度较高的命令,并且一次不要获取太多的数据,每次尽量操作少量的数据,让Redis可以及时处理返回。

 

存储大key
 

 

如果查询慢日志发现,并不是复杂度较高的命令导致的,例如都是SET、DELETE操作出现在慢日志记录中,那么你就要怀疑是否存在Redis写入了大key的情况。

 

Redis在写入数据时,需要为新的数据分配内存,当从Redis中删除数据时,它会释放对应的内存空间。

 

如果一个key写入的数据非常大,Redis在分配内存时也会比较耗时。同样的,当删除这个key的数据时,释放内存也会耗时比较久。

 

你需要检查你的业务代码,是否存在写入大key的情况,需要评估写入数据量的大小,业务层应该避免一个key存入过大的数据量。

 

那么有没有什么办法可以扫描现在Redis中是否存在大key的数据吗?

 

Redis也提供了扫描大key的方法:

 

 

redis-cli -h $host -p $port --bigkeys -i 0.01

 

使用上面的命令就可以扫描出整个实例key大小的分布情况,它是以类型维度来展示的。

 

需要注意的是当我们在线上实例进行大key扫描时,Redis的QPS会突增,为了降低扫描过程中对Redis的影响,我们需要控制扫描的频率,使用-i参数控制即可,它表示扫描过程中每次扫描的时间间隔,单位是秒。

 

使用这个命令的原理,其实就是Redis在内部执行scan命令,遍历所有key,然后针对不同类型的key执行strlen、llen、hlen、scard、zcard来获取字符串的长度以及容器类型(list/dict/set/zset)的元素个数。

 

而对于容器类型的key,只能扫描出元素最多的key,但元素最多的key不一定占用内存最多,这一点需要我们注意下。不过使用这个命令一般我们是可以对整个实例中key的分布情况有比较清晰的了解。

 

针对大key的问题,Redis官方在4.0版本推出了lazy-free的机制,用于异步释放大key的内存,降低对Redis性能的影响。即使这样,我们也不建议使用大key,大key在集群的迁移过程中,也会影响到迁移的性能,这个后面在介绍集群相关的文章时,会再详细介绍到。

 

集中过期
 

 

有时你会发现,平时在使用Redis时没有延时比较大的情况,但在某个时间点突然出现一波延时,而且报慢的时间点很有规律,例如某个整点,或者间隔多久就会发生一次。

 

如果出现这种情况,就需要考虑是否存在大量key集中过期的情况。

 

如果有大量的key在某个固定时间点集中过期,在这个时间点访问Redis时,就有可能导致延迟增加。

 

Redis的过期策略采用主动过期+懒惰过期两种策略:

 

  • 主动过期:Redis内部维护一个定时任务,默认每隔100毫秒会从过期字典中随机取出20个key,删除过期的key,如果过期key的比例超过了25%,则继续获取20个key,删除过期的key,循环往复,直到过期key的比例下降到25%或者这次任务的执行耗时超过了25毫秒,才会退出循环;

  • 懒惰过期:只有当访问某个key时,才判断这个key是否已过期,如果已经过期,则从实例中删除。

 

注意,Redis的主动过期的定时任务,也是在Redis主线程中执行的,也就是说如果在执行主动过期的过程中,出现了需要大量删除过期key的情况,那么在业务访问时,必须等这个过期任务执行结束,才可以处理业务请求。此时就会出现,业务访问延时增大的问题,最大延迟为25毫秒。

 

而且这个访问延迟的情况,不会记录在慢日志里。慢日志中只记录真正执行某个命令的耗时,Redis主动过期策略执行在操作命令之前,如果操作命令耗时达不到慢日志阈值,它是不会计算在慢日志统计中的,但我们的业务却感到了延迟增大。

 

此时你需要检查你的业务,是否真的存在集中过期的代码,一般集中过期使用的命令是expireat或pexpireat命令,在代码中搜索这个关键字就可以了。

 

如果你的业务确实需要集中过期掉某些key,又不想导致Redis发生抖动,有什么优化方案?

 

解决方案是,在集中过期时增加一个随机时间,把这些需要过期的key的时间打散即可。

 

伪代码可以这么写:

 

 

# 在过期时间点之后的5分钟内随机过期掉

redis.expireat(key, expire_time + random(300))

 

这样Redis在处理过期时,不会因为集中删除key导致压力过大,阻塞主线程。

 

另外,除了业务使用需要注意此问题之外,还可以通过运维手段来及时发现这种情况。

 

做法是我们需要把Redis的各项运行数据监控起来,执行info可以拿到所有的运行数据,在这里我们需要重点关注expired_keys这一项,它代表整个实例到目前为止,累计删除过期key的数量。

 

我们需要对这个指标监控,当在很短时间内这个指标出现突增时,需要及时报警出来,然后与业务报慢的时间点对比分析,确认时间是否一致,如果一致,则可以认为确实是因为这个原因导致的延迟增大。

 

实例内存达到上限
 

 

有时我们把Redis当做纯缓存使用,就会给实例设置一个内存上限maxmemory,然后开启LRU淘汰策略。

 

当实例的内存达到了maxmemory后,你会发现之后的每次写入新的数据,有可能变慢了。

 

导致变慢的原因是,当Redis内存达到maxmemory后,每次写入新的数据之前,必须先踢出一部分数据,让内存维持在maxmemory之下。

 

这个踢出旧数据的逻辑也是需要消耗时间的,而具体耗时的长短,要取决于配置的淘汰策略:

 

  • allkeys-lru:不管key是否设置了过期,淘汰最近最少访问的key;

  • volatile-lru:只淘汰最近最少访问并设置过期的key;

  • allkeys-random:不管key是否设置了过期,随机淘汰;

  • volatile-random:只随机淘汰有设置过期的key;

  • allkeys-ttl:不管key是否设置了过期,淘汰即将过期的key;

  • noeviction:不淘汰任何key,满容后再写入直接报错;

  • allkeys-lfu:不管key是否设置了过期,淘汰访问频率最低的key(4.0+支持);

  • volatile-lfu:只淘汰访问频率最低的过期key(4.0+支持)。

 

具体使用哪种策略,需要根据业务场景来决定。

 

我们最常使用的一般是allkeys-lru或volatile-lru策略,它们的处理逻辑是,每次从实例中随机取出一批key(可配置),然后淘汰一个最少访问的key,之后把剩下的key暂存到一个池子中,继续随机取出一批key,并与之前池子中的key比较,再淘汰一个最少访问的key。以此循环,直到内存降到maxmemory之下。

 

如果使用的是allkeys-random或volatile-random策略,那么就会快很多,因为是随机淘汰,那么就少了比较key访问频率时间的消耗了,随机拿出一批key后直接淘汰即可,因此这个策略要比上面的LRU策略执行快一些。

 

但以上这些逻辑都是在访问Redis时,真正命令执行之前执行的,也就是它会影响我们访问Redis时执行的命令。

 

另外,如果此时Redis实例中有存储大key,那么在淘汰大key释放内存时,这个耗时会更加久,延迟更大,这需要我们格外注意。

 

如果你的业务访问量非常大,并且必须设置maxmemory限制实例的内存上限,同时面临淘汰key导致延迟增大的的情况,要想缓解这种情况,除了上面说的避免存储大key、使用随机淘汰策略之外,也可以考虑拆分实例的方法来缓解,拆分实例可以把一个实例淘汰key的压力分摊到多个实例上,可以在一定程度降低延迟。

 

fork耗时严重
 

 

如果你的Redis开启了自动生成RDB和AOF重写功能,那么有可能在后台生成RDB和AOF重写时导致Redis的访问延迟增大,而等这些任务执行完毕后,延迟情况消失。

 

遇到这种情况,一般就是执行生成RDB和AOF重写任务导致的。

 

生成RDB和AOF都需要父进程fork出一个子进程进行数据的持久化,在fork执行过程中,父进程需要拷贝内存页表给子进程,如果整个实例内存占用很大,那么需要拷贝的内存页表会比较耗时,此过程会消耗大量的CPU资源,在完成fork之前,整个实例会被阻塞住,无法处理任何请求,如果此时CPU资源紧张,那么fork的时间会更长,甚至达到秒级。这会严重影响Redis的性能。

 

具体原理也可以参考我之前写的文章:Redis持久化是如何做的?RDB和AOF对比分析。

 

我们可以执行info命令,查看最后一次fork执行的耗时latest_fork_usec,单位微妙。这个时间就是整个实例阻塞无法处理请求的时间。

 

除了因为备份的原因生成RDB之外,在主从节点第一次建立数据同步时,主节点也会生成RDB文件给从节点进行一次全量同步,这时也会对Redis产生性能影响。

 

要想避免这种情况,我们需要规划好数据备份的周期,建议在从节点上执行备份,而且最好放在低峰期执行。如果对于丢失数据不敏感的业务,那么不建议开启AOF和AOF重写功能。

 

另外,fork的耗时也与系统有关,如果把Redis部署在虚拟机上,那么这个时间也会增大。所以使用Redis时建议部署在物理机上,降低fork的影响。

 

绑定CPU
 

 

很多时候,我们在部署服务时,为了提高性能,降低程序在使用多个CPU时上下文切换的性能损耗,一般会采用进程绑定CPU的操作。

 

但在使用Redis时,我们不建议这么干,原因如下。

 

绑定CPU的Redis,在进行数据持久化时,fork出的子进程,子进程会继承父进程的CPU使用偏好,而此时子进程会消耗大量的CPU资源进行数据持久化,子进程会与主进程发生CPU争抢,这也会导致主进程的CPU资源不足访问延迟增大。

 

所以在部署Redis进程时,如果需要开启RDB和AOF重写机制,一定不能进行CPU绑定操作!

 

开启AOF
 

 

上面提到了,当执行AOF文件重写时会因为fork执行耗时导致Redis延迟增大,除了这个之外,如果开启AOF机制,设置的策略不合理,也会导致性能问题。

 

开启AOF后,Redis会把写入的命令实时写入到文件中,但写入文件的过程是先写入内存,等内存中的数据超过一定阈值或达到一定时间后,内存中的内容才会被真正写入到磁盘中。

 

AOF为了保证文件写入磁盘的安全性,提供了3种刷盘机制:

 

  • appendfsync always:每次写入都刷盘,对性能影响最大,占用磁盘IO比较高,数据安全性最高;

  • appendfsync everysec:1秒刷一次盘,对性能影响相对较小,节点宕机时最多丢失1秒的数据;

  • appendfsync no:按照操作系统的机制刷盘,对性能影响最小,数据安全性低,节点宕机丢失数据取决于操作系统刷盘机制。

 

当使用第一种机制appendfsync always时,Redis每处理一次写命令,都会把这个命令写入磁盘,而且这个操作是在主线程中执行的。

 

内存中的的数据写入磁盘,这个会加重磁盘的IO负担,操作磁盘成本要比操作内存的代价大得多。如果写入量很大,那么每次更新都会写入磁盘,此时机器的磁盘IO就会非常高,拖慢Redis的性能,因此我们不建议使用这种机制。

 

与第一种机制对比,appendfsync everysec会每隔1秒刷盘,而appendfsync no取决于操作系统的刷盘时间,安全性不高。因此我们推荐使用appendfsync everysec这种方式,在最坏的情况下,只会丢失1秒的数据,但它能保持较好的访问性能。

 

当然,对于有些业务场景,对丢失数据并不敏感,也可以不开启AOF。

 

使用Swap
 

 

如果你发现Redis突然变得非常慢,每次访问的耗时都达到了几百毫秒甚至秒级,那此时就检查Redis是否使用到了Swap,这种情况下Redis基本上已经无法提供高性能的服务。

 

我们知道,操作系统提供了Swap机制,目的是为了当内存不足时,可以把一部分内存中的数据换到磁盘上,以达到对内存使用的缓冲。

 

但当内存中的数据被换到磁盘上后,访问这些数据就需要从磁盘中读取,这个速度要比内存慢太多!

 

尤其是针对Redis这种高性能的内存数据库来说,如果Redis中的内存被换到磁盘上,对于Redis这种性能极其敏感的数据库,这个操作时间是无法接受的。

 

我们需要检查机器的内存使用情况,确认是否确实是因为内存不足导致使用到了Swap。

 

如果确实使用到了Swap,要及时整理内存空间,释放出足够的内存供Redis使用,然后释放Redis的Swap,让Redis重新使用内存。

 

释放Redis的Swap过程通常要重启实例,为了避免重启实例对业务的影响,一般先进行主从切换,然后释放旧主节点的Swap,重新启动服务,待数据同步完成后,再切换回主节点即可。

 

可见,当Redis使用到Swap后,此时的Redis的高性能基本被废掉,所以我们需要提前预防这种情况。

 

我们需要对Redis机器的内存和Swap使用情况进行监控,在内存不足和使用到Swap时及时报警出来,及时进行相应的处理。

 

网卡负载过高
 

 

如果以上产生性能问题的场景,你都规避掉了,而且Redis也稳定运行了很长时间,但在某个时间点之后开始,访问Redis开始变慢了,而且一直持续到现在,这种情况是什么原因导致的?

 

之前我们就遇到这种问题,特点就是从某个时间点之后就开始变慢,并且一直持续。这时你需要检查一下机器的网卡流量,是否存在网卡流量被跑满的情况。

 

网卡负载过高,在网络层和TCP层就会出现数据发送延迟、数据丢包等情况。Redis的高性能除了内存之外,就在于网络IO,请求量突增会导致网卡负载变高。

 

如果出现这种情况,你需要排查这个机器上的哪个Redis实例的流量过大占满了网络带宽,然后确认流量突增是否属于业务正常情况,如果属于那就需要及时扩容或迁移实例,避免这个机器的其他实例受到影响。

 

运维层面,我们需要对机器的各项指标增加监控,包括网络流量,在达到阈值时提前报警,及时与业务确认并扩容。

 

以上我们总结了Redis中常见的可能导致延迟增大甚至阻塞的场景,这其中既涉及到了业务的使用问题,也涉及到Redis的运维问题。

 

可见,要想保证Redis高性能的运行,其中涉及到CPU、内存、网络,甚至磁盘的方方面面,其中还包括操作系统的相关特性的使用。

 

作为开发人员,我们需要了解Redis的运行机制,例如各个命令的执行时间复杂度、数据过期策略、数据淘汰策略等,使用合理的命令,并结合业务场景进行优化。

 

作为DBA运维人员,需要了解数据持久化、操作系统fork原理、Swap机制等,并对Redis的容量进行合理规划,预留足够的机器资源,对机器做好完善的监控,才能保证Redis的稳定运行。

 

Redis的最佳实践方式:业务层面和运维层面

 

在上文中,主要讲解了 Redis 常见的导致变慢的场景以及问题定位和分析,主要是由业务使用不合理和运维不当导致的。

 

我们在了解了导致Redis变慢的原因之后,针对性地优化,就可以让Redis稳定发挥出更高性能。

 

接着就来总结一下,在使用Redis时的最佳实践方式,主要包含两个层面:业务层面、运维层面。

 

由于我之前写过很多UGC后端服务,在大量场景下用到了Redis,这个过程中也踩过很多坑,所以在使用过程中也总结了一套合理的使用方法。

 

后来做基础架构,开发Codis、Redis相关的中间件,在这个阶段关注领域从使用层面下沉到Redis的开发和运维,更多聚焦在Redis的内部实现和运维过程中产生的各种问题,在这块也积累了一些经验。

 

下面就针对这两块,分享一下我认为比较合理的Redis使用和运维方法,不一定最全面,也可能与你使用Redis的方法不同,但以下这些方法都是我在踩坑之后总结的实际经验,供你参考。

 

业务层面
 

 

业务层面主要是开发人员需要关注,也就是开发人员在写业务代码时,如何合理地使用Redis。开发人员需要对Redis有基本的了解,才能在合适的业务场景使用Redis,从而避免业务层面导致的延迟问题。

 

在开发过程中,业务层面的优化建议如下:

 

  • key的长度尽量要短,在数据量非常大时,过长的key名会占用更多的内存;

  • 一定避免存储过大的数据(大value),过大的数据在分配内存和释放内存时耗时严重,会阻塞主线程;

  • Redis 4.0以上建议开启lazy-free机制,释放大value时异步操作,不阻塞主线程;

  • 建议设置过期时间,把Redis当做缓存使用,尤其在数量很大的时,不设置过期时间会导致内存的无限增长;

  • 不使用复杂度过高的命令,例如SORT、SINTER、SINTERSTORE、ZUNIONSTORE、ZINTERSTORE,使用这些命令耗时较久,会阻塞主线程;

  • 查询数据时,一次尽量获取较少的数据,在不确定容器元素个数的情况下,避免使用LRANGE key 0 -1,ZRANGE key 0 -1这类操作,应该设置具体查询的元素个数,推荐一次查询100个以下元素;

  • 写入数据时,一次尽量写入较少的数据,例如HSET key value1 value2 value3...,控制一次写入元素的数量,推荐在100以下,大数据量分多个批次写入;

  • 批量操作数据时,用MGET/MSET替换GET/SET、HMGET/MHSET替换HGET/HSET,减少请求来回的网络IO次数,降低延迟,对于没有批量操作的命令,推荐使用pipeline,一次性发送多个命令到服务端;

  • 禁止使用KEYS命令,需要扫描实例时,建议使用SCAN,线上操作一定要控制扫描的频率,避免对Redis产生性能抖动

  • 避免某个时间点集中过期大量的key,集中过期时推荐增加一个随机时间,把过期时间打散,降低集中过期key时Redis的压力,避免阻塞主线程;

  • 根据业务场景,选择合适的淘汰策略,通常随机过期要比LRU过期淘汰数据更快;

  • 使用连接池访问Redis,并配置合理的连接池参数,避免短连接,TCP三次握手和四次挥手的耗时也很高;

  • 只使用db0,不推荐使用多个db,使用多个db会增加Redis的负担,每次访问不同的db都需要执行SELECT命令,如果业务线不同,建议拆分多个实例,还能提高单个实例的性能;

  • 读的请求量很大时,推荐使用读写分离,前提是可以容忍从节数据更新不及时的问题;

  • 写请求量很大时,推荐使用集群,部署多个实例分摊写压力。

 

运维层面
 

 

运维层面主要是DBA需要关注的,目的是合理规划Redis的部署和保障Redis的稳定运行,主要优化如下:

 

  • 不同业务线部署不同的实例,各自独立,避免混用,推荐不同业务线使用不同的机器,根据业务重要程度划分不同的分组来部署,避免某一个业务线出现问题影响其他业务线;

  • 保证机器有足够的CPU、内存、带宽、磁盘资源,防止负载过高影响Redis性能;

  • 以master-slave集群方式部署实例,并分布在不同机器上,避免单点,slave必须设置为readonly;

  • master和slave节点所在机器,各自独立,不要交叉部署实例,通常备份工作会在slave上做,做备份时会消耗机器资源,交叉部署会影响到master的性能;

  • 推荐部署哨兵节点增加可用性,节点数量至少3个,并分布在不同机器上,实现故障自动故障转移;

  • 提前做好容量规划,一台机器部署实例的内存上限,最好是机器内存的一半,主从全量同步时会占用最多额外一倍的内存空间,防止网络大面积故障引发所有master-slave的全量同步导致机器内存被吃光;

  • 做好机器的CPU、内存、带宽、磁盘监控,在资源不足时及时报警处理,Redis使用Swap后性能急剧下降,网络带宽负载过高访问延迟明显增大,磁盘IO过高时开启AOF会拖慢Redis的性能;

  • 设置最大连接数上限,防止过多的客户端连接导致服务负载过高;

  • 单个实例的使用内存建议控制在10G以下,过大的实例会导致备份时间久、资源消耗多,主从全量同步数据时间阻塞时间更长;

  • 设置合理的slowlog阈值,推荐10毫秒,并对其进行监控,产生过多的慢日志需要及时报警;

  • 设置合理的复制缓冲区repl-backlog大小,适当调大repl-backlog可以降低主从全量复制的概率;

  • 设置合理的slave节点client-output-buffer-limit大小,对于写入量很大的实例,适当调大可以避免主从复制中断问题;

  • 备份时推荐在slave节点上做,不影响master性能;

  • 不开启AOF或开启AOF配置为每秒刷盘,避免磁盘IO消耗降低Redis性能;

  • 当实例设置了内存上限,需要调大内存上限时,先调整slave再调整master,否则会导致主从节点数据不一致;

  • 对Redis增加监控,监控采集info信息时,使用长连接,频繁的短连接也会影响Redis性能;

  • 线上扫描整个实例数时,记得设置休眠时间,避免扫描时QPS突增对Redis产生性能抖动;

  • 做好Redis的运行时监控,尤其是expired_keys、evicted_keys、latest_fork_usec指标,短时间内这些指标值突增可能会阻塞整个实例,引发性能问题。

 

以上就是我在使用Redis和开发Redis相关中间件时,总结出来Redis推荐的实践方法,以上提出的这些方面,都或多或少在实际使用中遇到过。

 

可见,要想稳定发挥Redis的高性能,需要在各个方面做好工作,但凡某一个方面出现问题,必然会影响到Redis的性能,这对我们使用和运维提出了更高的要求。

 

如果你在使用Redis过程中,遇到更多的问题或者有更好的使用经验,可以留言一起探讨!

 

作者丨Kaito
来源丨http://kaito-kidd.com/
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn
活动预告