了解这些“奇葩”操作,快速写出高效SQL

周潮潮(徽成) 2023-04-03 11:50:22

一、背景

 

关于sql调参数、数据倾斜可以搜到很多文章,本文主要讲解常见的SQL开发场景、“奇葩SQL写法并深入执行计划,带你了解如何快速写出高效率SQL。

 

二、高效写法

 

 
1、union直接使用效率低吗?

 

  • 场景介绍

 

在一些业务场景中,需要将多份数据合并在一起,比如要取客户信息,客户信息存在两张表中有交叉(假设两张表中交叉的客户信息是一致的),需先将两份数据合并在一起。

 

  • 写法&执行计划探查

 

因为两张表中数据有交叉,所以需要会先将数据去重,然后再去join。去重方式常见于:

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
SELECT  cst_id,cst_infoFROM    (    SELECT  cst_id,cst_info    FROM    @cst_info_a    WHERE   dt = '${bizdate}'


    UNION 


    SELECT  cst_id,cst_info    FROM    cst_info_b    WHERE   dt = '${bizdate}')cst_info;

 

这种情况下,会理解为先将两两份数据不做任务处理就合并在一起,导致shuffle、中间临时写入的数据量和读取数据量和数据源都是一致的,然后再去做去重。因为数据量在中间过程没有没有减少,所以效率相对来说会低一些。现在来看一下执行计划:

 

图片

 

发现执行计划是做过的优化的,已经是最优执行计划了。

 

接下来按照理解中的高效sql写法来看一下执行计划:

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 方式一SELECT  cst_id,cst_infoFROM    (    SELECT  cst_id,cst_info    FROM    @cst_info_a    WHERE   dt = '${bizdate}'    GROUP BY cst_id,cst_info


    UNION


    SELECT  cst_id,cst_info    FROM    @cst_info_b    WHERE   dt = '${bizdate}'    GROUP BY cst_id,cst_info)cst_info;




--方式二SELECT  cst_id,cst_infoFROM    (    SELECT  cst_id,cst_info    FROM    @cst_info_a    WHERE   dt = '${bizdate}'    GROUP BY cst_id,cst_info


    UNION ALL


    SELECT  cst_id,cst_info    FROM   @cst_info_b    WHERE   dt = '${bizdate}'    GROUP BY cst_id,cst_info)cst_infoGROUP BY     cst_id,cst_info;

 

两种写法的执行计划一致,如下:

 

图片

 

发现自己另外加的聚合处理反而增加了复杂度

 

  • 总结

 

ODPS已经对union做过优化,直接使用就可以了。并且对三个及以上的(X张)表做union,执行计划是X个MAP任务+1个REDUCE任务;不会像hive是X个MAP任务+(X-1)个REDUCE任务,还需要调整SQL才能实现最优的执行计划。

 

 
2、count distinct真的慢吗?

 

  • 场景介绍

 

在开发过程中,经常会遇到一些数据探查,比如探查资产信息表中,有多少用户数,探查过程中经常会用到count distinct,那么它的效率如何?

 

  • 写法&执行计划探查

 

探查资产信息表中近5天的用户数,常见的写法与常规认为的优化写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
--选择近5天的资产来看--常见写法,count distinct写法SELECT      COUNT(DISTINCT cst_id) AS cst_cntFROM @pc_bill_balWHERE dt BETWEEN  '${bizdate-5}' AND '${bizdate}';

--优化写法SELECT  COUNT(1) AS cst_cntFROM    (    SELECT          cst_id    FROM @pc_bill_bal    WHERE dt BETWEEN  '${bizdate-5}' AND '${bizdate}'    GROUP BY         cst_id)base;

 

一般都会认为直接count distinct效率很低,是这样吗?接下来看一下两个执行计划对比:

 

  • 常规写法

 

图片

 

  • 优化写法

 

图片

 

从执行计划可以看出,直接count distinct的写法被优化成了两次去重处理,一次计算总和,并不是直接全量来去重计算。再看优化写法,两次去重处理,两次计算总和,反而比count distinct多了一步,不过运行效率还是很快的。最后看一下运行时间和消耗资源,常规写法比优化写法快了28%(62s、86s),资源消耗少28%。

 

那么count distinct可以肆无忌惮的使用了吗?

 

接下来看另外一种场景,探查资产信息表中近5天每天的用户数,常见的写法与常规认为的优化写法:

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
--选择近5天的资产来看--常见写法,count distinct写法SELECT      dt    ,COUNT(DISTINCT cst_id) AS cst_cntFROM @pc_bill_balWHERE dt BETWEEN  '${bizdate-5}' AND '${bizdate}'GROUP BY     dt;

--优化写法SELECT      dt    ,COUNT(cst_id) AS cst_cntFROM    (    SELECT          dt        ,cst_id    FROM @pc_bill_bal    WHERE dt BETWEEN  '${bizdate-5}' AND '${bizdate}'    GROUP BY         dt        ,cst_id)baseGROUP BY     dt;

 

看一下这种场景下两种执行计划对比:

 

  • 常规写法(此处额外看一下分配的task)

 

图片

 

图片

 

  • 优化写法

 

图片

 

图片

 

从执行计划可以看出,直接count distinct的写法进行了一次去重,就将3亿条数据给到了5个task进行去重计算总和,每个task的压力相当大。再看优化写法,两次去重处理,两次计算总和,每一步都运行的很快,没有长尾。最后看一下运行时间和消耗资源,常规写法比优化写法慢了26倍,资源消耗多出2倍。

 

  • 总结

 

ODPS对count distinct做了执行计划优化,但是限于从数据源只读取1个字段的情况下。当从数据源读取了多个字段时,应将count distinct写法改为group by count写法。

 

 
3、多张大表join提速(聚合类型)

 

  • 场景介绍

 

在日常的开发工作中,经常会遇到多张表关联取属性的情况,比如计算用户在过去一段时间A、B、C...N行为的次数,或者是在资管领域中,统计一个资产池中的所有资产(日初资产+放款资产+买入资产)。

 

  • 写法&执行计划探查

 

假设有3份数据需要关联得到属性,常规的写法为使用2次full outer join + coalesce来关联取值;或者先将3份数据主体合并在一起,再使用3次left join。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 举例为资产池得到每个用户的所有资产-- 使用full outer join + coalesce的写法SELECT      COALESCE(tt1.cst_id, tt2.cst_id) as cst_id     ,COALESCE(tt1.bal_init_prin, 0) AS bal_init_prin    ,COALESCE(tt1.amt_retail_prin, 0) AS amt_retail_prin    ,COALESCE(tt2.amt_buy_prin, 0) AS amt_buy_prinFROM    (    SELECT          COALESCE(t1.cst_id, t2.cst_id) as cst_id         ,COALESCE(t1.bal_init_prin, 0) AS bal_init_prin        ,COALESCE(t2.amt_retail_prin, 0) AS amt_retail_prin    FROM    @bal_init t1           -- 日初资产    FULL OUTER JOIN @amt_retail t2 -- 当天放款资产    ON t1.cst_id = t2.cst_id)tt1FULL OUTER JOIN @amt_buy tt2       -- 当天买入资产ON tt1.cst_id = tt2.cst_id;

 

接下来看优化写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 写法一SELECT    cst_id    ,SUM(bal_init_prin) as bal_init_prin    ,SUM(amt_retail_prin) as amt_retail_prin    ,SUM(amt_buy_prin) as amt_buy_prinFROM (    SELECT cst_id, bal_init_prin, 0 AS amt_retail_prin, 0 AS amt_buy_prin    FROM @bal_init     -- 日初资产    union ALL     SELECT cst_id, 0 AS bal_init_prin, amt_retail_prin, 0 AS amt_buy_prin    FROM @amt_retail   -- 当天放款资产    UNION ALL     SELECT cst_id, 0 AS bal_init_prin, 0 AS amt_retail_prin, amt_buy_prin    FROM @amt_buy      -- 当天买入资产)t1GROUP BY     cst_id;

-- 优化写法二SELECT    cst_id    ,SUM(IF(flag = 1, prin, 0)) as bal_init_prin    ,SUM(IF(flag = 2, prin, 0)) as amt_retail_prin    ,SUM(IF(flag = 3, prin, 0)) as amt_buy_prinFROM (    SELECT cst_id, bal_init_prin AS prin, 1 AS flag    FROM @bal_init    -- 日初资产    union ALL     SELECT cst_id, amt_retail_prin AS prin, 2 AS flag    FROM @amt_retail  -- 当天放款资产    UNION ALL     SELECT cst_id, amt_buy_prin AS prin, 3 AS flag    FROM @amt_buy    -- 当天买入资产)t1GROUP BY     cst_id;

 

对比join写法和优化写法的执行计划(这两个执行计划内部做的事情和任务名称理解一致,就不展开看了):

 

  • join写法

 

图片

 

  • 优化写法

 

图片

 

从执行计划可以看出,join写法的执行步骤要更多,多次shuffle也会消耗更多的资源,串行运行的时间也会更长。优化写法只需要在读取所有数据之后,做一次reduce就可以完成。最后对比一下运行时间和资源消耗,优化写法运行时间快20%,资源使用减少30%。(场景越复杂,效果越好)

 

  • 总结

 

由于JOIN是离线数据开发中最常出现低效的环节,那么直接干掉JOIN其实是更好的选择。

 

当多张表的关联键相同取int类型、聚合的值的场景下,union all + group by写法运行更快、更节省资源、代码开发运维更加简单,并且在表行数越多、关联表越多、关联键越多的场景下,优势会更加突出。

 

关于两种优化写法,优化写法二更加灵活、更好维护、资源占用更少,但是对于需要使用占位数据的场景(比如聚合map),方法一更加适合。

 

 
4、多张大表join提速(字符串类型)

 

  • 场景介绍

 

日常开发中,经常遇到从一个主体多张表取属性的情况,比如客户信息相关的数据,A表取地址、B表取电话号、C表取uv、D表取身份信息、E表取偏好。

 

  • 写法&执行计划探查

 

假设有3份数据需要关联得到属性,常规的写法为使用2次full outer join + coalesce来关联取值;或者先将3份数据主体合并在一起,再使用3次left join。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 本案例和上边案例类似,使用先将主体合并在一起,再使用三次left joinSELECT      base.cst_id          AS cst_id    ,t1.bal_init_prin    AS bal_init_prin    ,t2.amt_retail_prin  AS amt_retail_prin    ,t3.amt_buy_prin     AS amt_buy_prinFROM (    SELECT         cst_id    FROM @bal_init             -- 日初资产    UNION     SELECT         cst_id    FROM @amt_retail           -- 当天放款资产    UNION    SELECT             cst_id    FROM @amt_buy              -- 当天买入资产)baseLEFT JOIN @bal_init t1         -- 日初资产ON base.cst_id = t1.cst_idLEFT JOIN @amt_retail t2       -- 当天放款资产ON base.cst_id = t2.cst_idLEFT JOIN @amt_buy t3          -- 当天买入资产ON base.cst_id = t3.cst_id;

 

接下来看优化写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- STRING数据类型利用json来实现SELECT      cst_id    ,GET_JSON_OBJECT(all_val, '$.bal_init_prin')   AS bal_init_prin    ,GET_JSON_OBJECT(all_val, '$.amt_retail_prin') AS amt_retail_prin    ,GET_JSON_OBJECT(all_val, '$.amt_buy_prin')    AS amt_buy_prinFROM    (    SELECT        cst_id        ,CONCAT('{',CONCAT_WS(',', COLLECT_SET(all_val)) , '}') AS all_val    FROM (        SELECT             cst_id            ,CONCAT('\"bal_init_prin\":\"', bal_init_prin, '\"') AS all_val        FROM @bal_init        -- 日初资产        UNION ALL         SELECT             cst_id            ,CONCAT('\"amt_retail_prin\":\"', amt_retail_prin, '\"') AS all_val        FROM @amt_retail      -- 当天放款资产        UNION ALL         SELECT             cst_id            ,CONCAT('\"amt_buy_prin\":\"', amt_buy_prin, '\"') AS all_val        FROM @amt_buy         -- 当天买入资产    )t1    GROUP BY         cst_id)tt1;

 

对比join写法和优化写法的执行计划:

 

  • join写法

 

图片

 

图片

 

  • 优化写法

 

图片

 

图片

 

对比两个执行计划,join写法对于每一张表的数据使用了两次,分别为构建主体和取值,所以每一个MAP、JOIN任务的复杂度还是比较高的,但是优化写法MAP、REDUCE任务简洁明了。

 

并且随着表的增多,JOIN写法的JOIN任务负责度会更高。对比运行时间和资源消耗,优化写法运行快了20%,资源消耗减少20%。(场景越复杂,效果越好)

 

由于使用到collect_set,所以需要考虑该节点是否存在超内存的问题并进行内存调整,该场景一般情况下不会出现。

 

  • 总结

 

同大表join(聚合类型),区别在于此方法适用于STRING类型。注意collect_set函数的内存占用。

 

 
5、mapjoin为什么快?是否生效了?

 

  • 场景介绍

 

日常开发中,经常会遇到大表join小表的情况,mapjoin是老生常谈的处理方式,但是也要注意写法、小表内存参数调整以保障mapjoin生效。

 

  • 写法&执行计划探查

 

目前ODPS对mapjoin做了优化可以自动开启,不用手动写/* +mapjoin(a,b)*/来开启了。inner join,大表left join小表都可以直接使mapjoin生效。

 

  • mapjoin生效写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- base为大表,fee_year_rate为小表-- 方式一,inner joinSELECT          base.*        ,fee_year_rate.*FROM @base baseINNER JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms);

-- 方式一,LEFT joinSELECT          base.*        ,fee_year_rate.*FROM @base baseLEFT JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms);

 

  • mapjoin未生效写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 方式三,right joinSELECT          base.*        ,fee_year_rate.*FROM @base baseRIGHT JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms);

-- 方式四, full outer joinSELECT          base.*        ,fee_year_rate.*FROM @base baseFULL OUTER JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms);

 

对比一下执行计划:

 

  • mapjoin生效执行计划

 

图片

 

图片

 

  • mapjoin未生效执行计划

 

图片

 

图片

 

MapJoin简单说就是在Map阶段将小表读入内存,顺序扫描大表完成Join。

 

对比两种执行计划,mapjoin生效之后,只有两个MAP任务,没有了JOIN任务,相当于省了一次JOIN。

 

mapjoin是否生效,可以看是HashJoin还是MergeJoin来判断。

 

  • 总结

 

mapjoin开启之后,运行效率提高明显,但会因为写法、小表过大不生效,要从执行计划中去判断并做参数调整保障mapjoin生效。

 

小表大小调整参数:set odps.sql.mapjoin.memory.max=2048(单位M)

 

 
6、distmapjoin:加强版mapjoin

 

  • 场景介绍

 

对于大小表join的场景,小表经常会超出mapjoin的最大内存,那么mapjoin就不会生效了。

 

ODPS提供了将中型表放入内存的方案,即distmapjoin,用法和mapjoin相似,即在select语句中使用Hint提示/*+distmapjoin(<table_name>(shard_count=<n>,replica_count=<m>))*/才会执行distmapjoin。shard_count(分片数,默认[200M,500M])和replica_count(副本数,默认1)共同决定任务运行的并发度,即并发度=shard_count * replica_count。

 

  • 写法&执行计划探查

 

  • 常规写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
SELECT      base.*    ,cst_info.*FROM    @base baseLEFT JOIN @cst_info cst_infoON (base.cst_id = cst_info.cst_id    AND base.origin_inst_code = cst_info.inst_id);

 

  • 优化写法

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
SELECT  /*+distmapjoin(cst_info(shard_count=20))*/    base.*    ,cst_info.*FROM    @base baseLEFT JOIN @cst_info cst_infoON (base.cst_id = cst_info.cst_id    AND base.origin_inst_code = cst_info.inst_id);

 

对比执行计划:

 

  • 常规写法

 

图片

 

图片

 

  • 优化写法

 

图片

 

图片

 

对比两种执行计划和mapjoin执行计划可以发现,优化写法都省去了JOIN任务,这个在很大程度上加快了运行速度和降低资源消耗,distmapjoin写法比mapjoin写法多了一个REDUCE任务,即对小表的分片。

 

distmapjoin是否生效,可以看是DistributedMapJoin1还是MergeJoin来判断。

 

  • 总结

同mapjoin总结。

 

 
7、where限制条件写在外层会很慢吗?

 

  • 场景介绍

 

日常开发中,大家都习惯性将过滤条件紧跟在读表之后,这样可以减少数据量以减少任务运行时间。

 

  • 写法&执行计划探查

 

过滤条件在读表之后的规范写法和多表join之后再过滤的非规范写法:

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
-- 规范写法SELECT          base.*        ,fee_year_rate.*FROM (    SELECT  *    FROM    @base    where terms = '12')baseINNER JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms);



-- 非规范写法SELECT          base.*        ,fee_year_rate.*FROM @base baseINNER JOIN @fee_year_rate fee_year_rateON (base.terms = fee_year_rate.terms)WHERE   base.terms = '12';

 

印象中,规范写法的运行效率肯定会高一些,看一下执行计划会发现两种写法的执行计划是一样的,都在join之前做了过滤。

 

图片

 

  • 总结

 

ODPS对谓词前置做了很好的优化,但是日常开发也尽量将过滤条件跟在读表之后,这样更加规范,代码也会具有更好的可读性。

 

三、总结

 

做好SQL开发、优化,得先学会阅读执行计划,多动手尝试可以快速帮助你掌握该技能。(本篇讲到的执行计划,随着ODPS的优化,会发生改变)

 

作者丨周潮潮(徽成)
来源丨公众号:阿里开发者(ID:ali_tech)
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn
最新评论
访客 2024年04月08日

如果字段的最大可能长度超过255字节,那么长度值可能…

访客 2024年03月04日

只能说作者太用心了,优秀

访客 2024年02月23日

感谢详解

访客 2024年02月20日

一般干个7-8年(即30岁左右),能做到年入40w-50w;有…

访客 2023年08月20日

230721

活动预告