万字详解微服务世纪难题:如何平滑拆分单体?

徐强,张均杰,黄威 2024-01-18 10:35:39

 

一、背景

 

部门中维护了一个老系统,功能都耦合在一个单体应用中(300+接口),表也放在同一个库中(200+表),导致系统存在很多风险和缺陷。经常出现问题:如数据库的单点、性能问题,应用的扩展受限,复杂性高等问题。

 

从下图可见。各业务相互耦合无明确边界,调用关系错综复杂。

 

图片

 

随着业务快速发展,各种问题越来越明显,急需对系统进行微服务改造优化。经过思考,整体改造将分为三个阶段进行:

 

  • 数据库拆分:数据库按照业务垂直拆分。

  • 应用拆分:应用按照业务垂直拆分。

  • 数据访问权限收口:数据权限按照各自业务领域,归属到各自的应用,应用与数据库一对一,禁止交叉访问。

 

图片

 

二、数据库拆分

 

单体数据库的痛点:未进行业务隔离,一个慢SQL易导致系统整体出现问题;读写压力大,性能下降;

 

 
1.数据库改造

 

图片

 

根据业务划分,我们计划将数据库拆分为9个业务库。数据同步方式采用主从复制的方式,我们提前整理好表和新数据库的对应关系交给运维同学,运维同学通过binlog过滤将对应的表和数据同步到对应的新数据库中,每个新数据库中只包含自己业务的表。

 

 
2.代码改造方案

 

如果一个接口中操作了多张表,之前这些表属于同一个库,数据库拆分后可能会分属于不同的库。所以需要针对代码进行相应的改造。

 

1)目前存在问题的位置:

 

  • 数据源选择:系统之前是支持多数据源切换的,在service上添加注解来选择数据源。数据库拆分后出现的情况是同一个service中操作的多个mapper从属于不同的库。

  • 事务:事务注解目前是存在于service上的,并且事务会缓存数据库链接,一个事务内不支持同时操作多个数据库。

 

2)改造点梳理:

 

  • 同时写入多个库,且是同一事务的接口6个:需改造数据源,需改造事务,需要关注分布式事务;

  • 同时写入多个库,且不是同一事务的接口50+:需改造数据源,需改造事务,无需关注分布式事务;

  • 同时读取多个库 或 读取一个库写入另一个库的接口200+:需改造数据源,但无需关注事务;

  • 涉及多个库的表的联合查询8个:需进行代码逻辑改造

 

3)梳理方式:

 

采用部门中的切面工具,抓取入口和表的调用关系(可识别表的读/写操作),找到一个接口中操作了多个表,并且多个表分属于不同业务库的情况;

 

4)分布式事务:

 

进行应用拆分和数据访问权限收口之后,是不存在分布式事务的问题的,因为操作第二个库会调用对应系统的RPC接口进行操作。所以本次不会正式支持分布式事务,而是采用代码逻辑保证一致性的方式来解决;

 

方案一

 

图片

 

将service中分别操作多个库的mapper,抽取成多个Service。分别添加切换数据源注解和事务注解。

 

问题:改动位置多,涉及改动的每个方法都需要梳理历史业务;service存在很多嵌套调用的情况,有时难以理清逻辑;修改200+位置改动工作量大,风险高;

 

方案二

 

图片

 

如图所示,方案二将数据源注解移动到Mapper上,并使用自定义的事务实现来处理事务。

 

将多数据源注解放到Mapper上的好处是,不需要梳理代码逻辑,只需要在Mapper上添加对应数据源名称即可。但是这样又有新的问题出现,

 

问题1:如上图,事务的是配置在Service层,当事务开启时,数据源的连接并没有获取到,因为真正的数据源配置在Mapper上。所以会报错,这个错误可以通过多数据源组件的默认数据源功能解决。

 

问题2:mybatis的事务实现会缓存数据库链接。当第一次缓存了数据库链接后,后续配置在mapper上的数据源注解并不会重新获取数据库链接,而是直接使用缓存起来的数据库链接。如果后续的mapper要操作其余数据库,会出现找不到表的情况。鉴于以上问题,我们开发了一个自定义的事务实现类,用来解决这个问题。

 

下面将对方案中出现的两个组件进行简要说明原理。

 

 
3.多数据源组件

 

多数据源组件是单个应用连接多个数据源时使用的工具,其核心原理是通过配置文件将数据库链接在程序启动时初始化好,在执行到存在注解的方法时,通过切面获取当前的数据源名称来切换数据源,当一次调用涉及多个数据源时,会利用栈的特性解决数据源嵌套的问题。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
/** * 切面方法 */public Object switchDataSourceAroundAdvice(ProceedingJoinPoint pjp) throws Throwable {        //获取数据源的名字        String dsName = getDataSourceName(pjp);        boolean dataSourceSwitched = false;        if (StringUtils.isNotEmpty(dsName)                && !StringUtils.equals(dsName, StackRoutingDataSource.getCurrentTargetKey())) {            // 见下一段代码            StackRoutingDataSource.setTargetDs(dsName);            dataSourceSwitched = true;        }        try {            // 执行切面方法            return pjp.proceed();        } catch (Throwable e) {            throw e;        } finally {            if (dataSourceSwitched) {                StackRoutingDataSource.clear();            }        }    }

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public static void setTargetDs(String dbName) {    if (dbName == null) { throw new NullPointerException();    }    if (contextHolder.get() == null) {        contextHolder.set(new Stack<String>());    }    contextHolder.get().push(dbName);    log.debug("set current datasource is " + dbName);}

 

StackRoutingDataSource继承 AbstractRoutingDataSource类,AbstractRoutingDataSource是spring-jdbc包提供的一个了AbstractDataSource的抽象类,它实现了DataSource接口的用于获取数据库链接的方法。

 

 
4.自定义事务实现

 

从方案二的图中可以看到默认的事务实现使用的是mybatis的SpringManagedTransaction。

 

图片

 

如上图,Transaction和SpringManagedTransaction都是mybatis提供的类,他提供了接口供SqlSession使用,处理事务操作。通过下边的一段代码可以看到,事务对象中存在connection变量,首次获得数据库链接后,后续当前事务内的所有数据库操作都不会重新获取数据库链接,而是会使用现有的数据库链接,从而无法支持跨库操作。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public class SpringManagedTransaction implements Transaction {
  private static final Log LOGGER = LogFactory.getLog(SpringManagedTransaction.class);
  private final DataSource dataSource;
  private Connection connection;
  private boolean isConnectionTransactional;
  private boolean autoCommit;
  public SpringManagedTransaction(DataSource dataSource) {    notNull(dataSource, "No DataSource specified");    this.dataSource = dataSource;  }  // 下略}

 

MultiDataSourceManagedTransaction

是我们自定义的事务实现,继承自SpringManagedTransaction类,并在内部支持维护多个数据库链接。每次执行数据库操作时,会根据数据源名称判断,如果当前数据源没有缓存的链接则重新获取链接。这样,service上的事务注解其实控制了多个单库事务,且作用域范围相同,一起进行提交或回滚。

 

代码如下:

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
public class MultiDataSourceManagedTransaction extends SpringManagedTransaction {    private DataSource dataSource;
    public ConcurrentHashMap<String, Connection> CON_MAP = new ConcurrentHashMap<>();

    public MultiDataSourceManagedTransaction(DataSource dataSource) {        super(dataSource);        this.dataSource = dataSource;    }
    @Override    public Connection getConnection() throws SQLException {        Method getCurrentTargetKey;        String dataSourceKey;        try {            getCurrentTargetKey = dataSource.getClass().getDeclaredMethod("getCurrentTargetKey");            getCurrentTargetKey.setAccessible(true);            dataSourceKey = (String) getCurrentTargetKey.invoke(dataSource);        } catch (Exception e) {            log.error("MultiDataSourceManagedTransaction invoke getCurrentTargetKey 异常", e);            return null;        }
        if (CON_MAP.get(dataSourceKey) == null) {            Connection connection = dataSource.getConnection();            if (!TransactionSynchronizationManager.isActualTransactionActive()) {                connection.setAutoCommit(true);            } else {                connection.setAutoCommit(false);            }            CON_MAP.put(dataSourceKey, connection);            return connection;        }
        return CON_MAP.get(dataSourceKey);    }
    @Override    public void commit() throws SQLException {        if (CON_MAP == null || CON_MAP.size() == 0) {            return;        }        Set<Map.Entry<String, Connection>> entries = CON_MAP.entrySet();        for (Map.Entry<String, Connection> entry : entries) {            Connection value = entry.getValue();            if (!value.isClosed() && !value.getAutoCommit()) {                value.commit();            }        }    }
    @Override    public void rollback() throws SQLException {        if (CON_MAP == null || CON_MAP.size() == 0) {            return;        }        Set<Map.Entry<String, Connection>> entries = CON_MAP.entrySet();        for (Map.Entry<String, Connection> entry : entries) {            Connection value = entry.getValue();            if (value == null) {                continue;            }            if (!value.isClosed() && !value.getAutoCommit()) {                entry.getValue().rollback();            }        }    }
    @Override    public void close() throws SQLException {        if (CON_MAP == null || CON_MAP.size() == 0) {            return;        }        Set<Map.Entry<String, Connection>> entries = CON_MAP.entrySet();        for (Map.Entry<String, Connection> entry : entries) {            DataSourceUtils.releaseConnection(entry.getValue(), this.dataSource);        }        CON_MAP.clear();    }}

 

注:上面并不是分布式事务。在数据访问权限收口之前,它只存在于同一个JVM中。如果项目允许,可以考虑使用Atomikos和Mybatis整合的方案。

 

 
5.数据安全性

 

本次进行了很多代码改造,如何保证数据安全,保证数据不丢失,我们的机制如下,分为三种情况进行讨论:

 

  • 跨库事务:6处,采用了代码保证一致性的改造方式;上线前经过重点测试,保证逻辑无问题;

  • 单库事务:依赖于自定义事务实现,针对自定义事务实现这一个类进行充分测试即可,测试范围小,安全性有保障;

  • 其余单表操作:相关修改是在mapper上添加了数据源切换注解,改动位置几百处,几乎是无脑改动,但也存在遗漏或错改的可能;测试同学可以覆盖到核心业务流程,但边缘业务可能会遗漏;我们添加了线上监测机制,当出现找不到表的错误时(说明数据源切换注解添加错误),记录当前执行sql并报警,我们进行逻辑修复与数据处理。

 

综上,通过对三种情况的处理来保证数据的安全性。

 

二、应用拆分

 

系统接近单体架构,存在以下风险:

 

  • 系统性风险:一个组件缺陷会导致整个进程崩溃,如内存泄漏、死锁。

  • 复杂性高:系统代码繁多,每次修改代码都心惊胆战,任何一个bug都可能导致整个系统崩溃,不敢优化代码导致代码可读性也越来越差。

  • 测试环境冲突,测试效率低:业务都耦合在一个系统,只要有需求就会出现环境抢占,需要额外拉分支合并代码。

 

 
1.拆分方案

 

与数据库拆分相同,系统拆分也是根据业务划分拆成9个新系统。

 

方案一:搭建空的新系统,然后将老系统的相关代码挪到新系统。

 

  • 优点:一步到位。

  • 缺点:需要主观挑选代码,然后挪到新系统,可视为做了全量业务逻辑的变动,需要全量测试,风险高,周期长。

 

方案二:从老系统原样复制出9个新系统,然后直接上线,通过流量路由将老系统流量转发到新系统,后续再对新系统的冗余代码做删减。

 

  • 优点:拆分速度快,首次上线前无业务逻辑改动,风险低;后续删减代码时依据接口调用量情况来判定,也可视为无业务逻辑的改动,风险较低,并且各系统可各自进行,无需整体排期,较为灵活。

  • 缺点:分为了两步,拆分上线和删减代码

 

图片

拆分方案对比

 

我们在考虑拆分风险和拆分效率后,最终选择了方案二。

 

图片

方案二原理

 

 
2.拆分实践

 

1)搭建新系统

 

直接复制老系统代码,修改系统名称,部署即可。

 

2)流量路由

 

路由器是拆分的核心,负责分发流量到新系统,同时需要支持识别测试流量,让测试同学可以提前在线上测试新系统。我们这边用filter来作为路由器的,源码见下方。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
@Overridepublic void doFilter(ServletRequest request, ServletResponse response, FilterChain filterChain) throws ServletException, IOException {    HttpServletRequest servletRequest = (HttpServletRequest) request;    HttpServletResponse servletResponse = (HttpServletResponse) response;    // 路由开关(0-不路由, 1-根据指定请求头路由, 2-全量路由)    final int systemRouteSwitch = configUtils.getInteger("system_route_switch", 1);    if (systemRouteSwitch == 0) {        filterChain.doFilter(request, response);        return;    }    // 只路由测试流量    if (systemRouteSwitch == 1) {        // 检查请求头是否包含测试流量标识 包含才进行路由        String systemRoute = ((HttpServletRequest) request).getHeader("systemRoute");        if (systemRoute == null || !systemRoute.equals("1")) {            filterChain.doFilter(request, response);            return;        }    }
    String systemRouteMapJsonStr = configUtils.getString("route.map", "");    Map<String, String> map = JSONObject.parseObject(systemRouteMapJsonStr, Map.class);    String rootUrl = map.get(servletRequest.getRequestURI());
    if (StringUtils.isEmpty(rootUrl)) {        log.error("路由失败,本地服务内部处理。原因:请求地址映射不到对应系统, uri : {}", servletRequest.getRequestURI());        filterChain.doFilter(request, response);        return;    }
    String targetURL = rootUrl + servletRequest.getRequestURI();    if (servletRequest.getQueryString() != null) {        targetURL = targetURL + "?" + servletRequest.getQueryString();    }    RequestEntity<byte[]> requestEntity = null;    try {        log.info("路由开始 targetURL = {}", targetURL);        requestEntity = createRequestEntity(servletRequest, targetURL);        ResponseEntity responseEntity = restTemplate.exchange(requestEntity, byte[].class);        if (requestEntity != null && requestEntity.getBody() != null && requestEntity.getBody().length > 0) {            log.info("路由完成-请求信息: requestEntity = {}, body = {}", requestEntity.toString(), new String(requestEntity.getBody()));        } else {            log.info("路由完成-请求信息: requestEntity = {}", requestEntity != null ? requestEntity.toString() : targetURL);        }
        HttpHeaders headers = responseEntity.getHeaders();        String resp = null;        if (responseEntity.getBody() != null && headers != null && headers.get("Content-Encoding") != null && headers.get("Content-Encoding").contains("gzip")) {            byte[] bytes = new byte[30 * 1024];            int len = new GZIPInputStream(new ByteArrayInputStream((byte[]) responseEntity.getBody())).read(bytes, 0, bytes.length);            resp = new String(bytes, 0, len);        }

        log.info("路由完成-响应信息: targetURL = {}, headers = {}, resp = {}", targetURL, JSON.toJSONString(headers), resp);        if (headers != null && headers.containsKey("Location") && CollectionUtils.isNotEmpty(headers.get("Location"))) {            log.info("路由完成-需要重定向到 {}", headers.get("Location").get(0));            ((HttpServletResponse) response).sendRedirect(headers.get("Location").get(0));        }        addResponseHeaders(servletRequest, servletResponse, responseEntity);        writeResponse(servletResponse, responseEntity);    } catch (Exception e) {        if (requestEntity != null && requestEntity.getBody() != null && requestEntity.getBody().length > 0) {            log.error("路由异常-请求信息: requestEntity = {}, body = {}", requestEntity.toString(), new String(requestEntity.getBody()), e);        } else {            log.error("路由异常-请求信息: requestEntity = {}", requestEntity != null ? requestEntity.toString() : targetURL, e);        }        response.setCharacterEncoding("UTF-8");        ((HttpServletResponse) response).addHeader("Content-Type", "application/json");        response.getWriter().write(JSON.toJSONString(ApiResponse.failed("9999", "网络繁忙哦~,请您稍后重试")));    }}

 

3)接口抓取&归类

 

路由filter是根据接口路径将请求分发到各个新系统的,所以需要抓取一份接口和新系统的映射关系。我们这边自定义了一个注解@TargetSystem,用注解标识接口应该路由到的目标系统域名,

 

  •  
  •  
  •  
  •  
  •  
@TargetSystem(value = "http://order.demo.com")@GetMapping("/order/info")public ApiResponse orderInfo(String orderId) {    return ApiResponse.success();}

 

然后遍历获取所有controller根据接口地址和注解生成路由映射关系map。

 

  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
  •  
    /**     * 生成路由映射关系MAP     * key:接口地址 ,value:路由到目标新系统的域名     */    public Map<String, String> generateRouteMap() {        Map<RequestMappingInfo, HandlerMethod> handlerMethods = requestMappingHandlerMapping.getHandlerMethods();        Set<Map.Entry<RequestMappingInfo, HandlerMethod>> entries = handlerMethods.entrySet();        Map<String, String> map = new HashMap<>();        for (Map.Entry<RequestMappingInfo, HandlerMethod> entry : entries) {            RequestMappingInfo key = entry.getKey();            HandlerMethod value = entry.getValue();            Class declaringClass = value.getMethod().getDeclaringClass();            TargetSystem targetSystem = (TargetSystem) declaringClass.getAnnotation(TargetSystem.class);            String targetUrl = targetSystem.value();            String s1 = key.getPatternsCondition().toString();            String url = s1.substring(1, s1.length() - 1);            map.put(url, targetUrl);        }        return map;    }

 

图片

路由映射关系MAP

 

4)测试流量识别

 

测试可以用利用抓包工具charles,为每个请求都添加固定的请求头,也就是测试流量标识,路由器拦截请求后判断请求头内是否包含测试流量标,包含就路由到新系统,不包含就是线上流量留在老系统执行。

 

图片

路由流程

 

5)需求代码合并

 

执行系统拆分的过程中,还是有需求正在并行开发,并且需求代码是写在老系统的,系统拆分完成上线后,需要将这部分需求的代码合并到新系统,同时要保证git版本记录不能丢失,那应该怎么做呢?

 

我们利用了git可以添加多个多个远程仓库来解决需求合并的痛点,命令:git remote add origin 仓库地址,把新系统的git仓库地址添加为老系统git的远程仓库,老系统的git变动就可以同时push到所有新系统的仓库内,新系统pull下代码后进行合并。

 

图片

需求代码合并方案

 

6)上线风险

 

风险一:JOB在新老系统并行执行。新系统是复制的老系统,JOB也会复制过来,导致新老系统有相同的JOB,如果这时候上线新系统,新系统的JOB就会执行,老系统的JOB也一直在run,这样一个JOB就会执行2次。新系统刚上线还没经过测试验证,这时候执行JOB是有可能失败的。以上2种情况都会引起线上Bug,影响系统稳定性。

 

风险二:新系统提前消费MQ。和风险一一样,新系统监听和老系统一样的topic,如果新系统直接上线,消息是有可能被新系统消费的,新系统刚上线还没经过测试验证,消费消息有可能会出异常,造成消息丢失或其他问题,影响系统稳定性。

 

如何解决以上2个上线风险呢?

 

我们用“动态开关”解决了上述风险,为新老系统的JOB和MQ都加了开关,用开关控制JOB和MQ在新/老系统执行。上线后新系统的JOB和MQ都是关掉的,待QA测试通过后,把老系统的JOB和MQ关掉,把新系统的JOB和MQ打开就可以了。

 

图片

上线风险解决方案

 

 
3.系统瘦身

 

拆分的时候已经梳理出了一份“入口映射关系map”,每个新系统只需要保留自己系统负责的接口、JOB、MQ代码就可以了,除此之外都可以进行删除。

 

拆分带来的好处:

 

  • 系统架构更合理,可用性更高:即使某个服务挂了也不会导致整个系统崩溃。

  • 复杂性可控:每个系统都是单一职责,系统逻辑清晰。

  • 系统性能提升上限大:可以针对每个系统做优化,如加缓存。

  • 测试环境冲突的问题解决:不会因为多个系统需求并行而抢占环境。

 

四、数据访问权限收口

 

 
1.问题介绍

 

数据访问权限未收口:一个业务的数据库被其余业务应用直接访问,未通过rpc接口将数据访问权限收口到数据拥有方自己的应用。数据访问逻辑分散,存在业务耦合,阻碍后续迭代和优化。

 

问题产生的背景:之前是单体应用和单体数据库,未进行业务隔离。在进行数据库拆分和系统拆分时,为解决系统稳定性的问题需快速上线,所以未优化拆分后跨业务访问数据库的情况。本阶段是对数据库拆分和应用拆分的延伸和补充。

 

图片

业务改造前后对比

 

 
2.改造过程

 

1)RPC接口统计(如图一)

 

进行比对,如程序入口归类和调用的业务DB归类不一致,则认为Dao方法需提供RPC接口。

 

图片

图一

 

经统计,应用访问非本业务数据库的位置有260+。由于涉及位置多,人工改造成本高、效率较低,且有错改和漏掉的风险,我们采用了开发工具,用工具进行代码生成和批量修改的方式进行改造。

 

2)RPC接口生成(如图二)

 

  • 读取需要生成RPC接口的Dao文件,进行解析。

  • 获取文件名称,Dao方法列表,import导包列表等,放入ClassContext上下文。

  • 匹配api、rpc文件模板,从classContext内取值替换模板变量,通过package路径生成java文件到指定服务内。

  • 批量将服务内Dao名称后缀替换为Rpc服务名,减少人工改动风险,例:SettleRuleDao -> SettleRuleRpc 。

 

图片

图二

 

名词解释:

 

  • ftl:Freemarker模板的文件后缀名,FreeMarker是一个模版引擎,一个基于文本的模板输出工具

  • interfaceName:用存放api文件名称

  • className:用于存放serviceImpl文件名称

  • methodList:用于存放方法列表,包含入参、出参、返回值等信息

  • importList:用于存放api和impl文件内其他引用实体的导包路径

  • apiPackage:用于存放生成的Api接口类包名

  • implPackage:用于存放生成的Api实现类包名

  • rpcPackage:用于存放生成的rpc调用类包名

 

图片

代码示例1

 

图片

代码示例2

 

3)灰度方案(如图三)

 

  • 数据操作统一走RPC层处理,初期阶段RPC层兼顾RPC调用,也有之前的DAO调用,使用开关切换。

  • RPC层进行双读,进行Api层和Dao层返回结果的比对,前期优先返回Dao层结果,验证无问题后,在全量返回RPC的结果,清除其他业务数据库连接。

  • 支持开关一键切换,按流量进行灰度,降低数据访问权限收口风险。

图片

图三

 

收益:

  • 业务数据解耦,数据操作统一由各自垂直系统进行,入口统一。

  • 方便后续在接口粒度上增加缓存和降级处理。

 

五、总结

 

以上,是我们对单体系统的改造过程,经过了三步优化、上线,将单体系统平滑过渡到了微服务结构。解决了数据库的单点问题、性能问题,应用业务得到了简化,更利于分工,迭代。并且可以针对各业务单独进行优化升级,扩容、缩容,提升了资源的利用率。

 

作者丨徐强,张均杰,黄威
来源丨公众号:达达集团技术(ID:dada-tech)
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn
最新评论
访客 2024年04月08日

如果字段的最大可能长度超过255字节,那么长度值可能…

访客 2024年03月04日

只能说作者太用心了,优秀

访客 2024年02月23日

感谢详解

访客 2024年02月20日

一般干个7-8年(即30岁左右),能做到年入40w-50w;有…

访客 2023年08月20日

230721

活动预告