我是​如何一步步让公司的MySQL支撑亿级流量的

小爬 2024-04-29 11:31:12

 

一、主从读写分离

 

大部分互联网业务都是读多写少,因此优先考虑DB如何支撑更高查询数,首先就需要区分读、写流量,这才方便针对读流量单独扩展,即主从读写分离。

 

若前端流量突增导致从库负载过高,DBA会优先做个从库扩容上去,这样对DB的读流量就会落到多个从库,每个从库的负载就降了下来,然后开发再尽力将流量挡在DB层之上。

 

Cache V.S MySQL读写分离 由于从开发和维护的难度考虑,引入缓存会引入复杂度,要考虑缓存数据一致性,穿透,防雪崩等问题,并且也多维护一类组件。所以推荐优先采用读写分离,扛不住了再使用Cache。

 

 
1.core

 

主从读写分离一般将一个DB的数据拷贝为一或多份,并且写入到其它的DB服务器中:

 

  • 原始DB为主库,负责数据写入

  • 拷贝目标DB为从库,负责数据查询

 

所以主从读写分离的关键:

 

  • 数据的拷贝 即主从复制

  • 屏蔽主从分离带来的访问DB方式的变化 让开发人员使用感觉依旧在使用单一DB

 

二、主从复制

 

MySQL的主从复制依赖于binlog,即记录MySQL上的所有变化并以二进制形式保存在磁盘上二进制日志文件。

 

主从复制就是将binlog中的数据从主库传输到从库,一般异步:主库操作不会等待binlog同步完成。

 

 
1.主从复制的过程

 

  • 从库在连接到主节点时会创建一个I/O线程,以请求主库更新的binlog,并把接收到的binlog写入relay log文件,主库也会创建一个log dump线程发送binlog给从库;

  • 从库还会创建一个SQL线程,读relay log,并在从库中做回放,最终实现主从的一致性。

 

使用独立的log dump线程是异步,避免影响主库的主体更新流程,而从库在接收到信息后并不是写入从库的存储,是写入一个relay log,这是为避免写入从库实际存储会比较耗时,最终造成从库和主库延迟变长。

 

图片

主从异步复制的过程

 

基于性能考虑,主库写入流程并没有等待主从同步完成就返回结果,极端情况下,比如主库上binlog还没来得及落盘,就发生磁盘损坏或机器掉电,导致binlog丢失,主从数据不一致。不过概率很低,可容忍。

 

主库宕机后,binlog丢失导致的主从数据不一致也只能手动恢复。

 

主从复制后,即可:

 

  • 在写入时只写主库

  • 在读数据时只读从库

 

这样即使写请求会锁表或锁记录,也不会影响读请求执行。高并发下,可部署多个从库共同承担读流量,即一主多从支撑高并发读。

 

从库也能当成个备库,以避免主库故障导致数据丢失。

 

那无限制地增加从库就能支撑更高并发吗?NO!从库越多,从库连接上来的I/O线程越多,主库也要创建同样多log dump线程处理复制的请求,对于主库资源消耗较高,同时受限于主库的网络带宽,所以一般一个主库最多挂3~5个从库。

 

 
2.主从复制的副作用

 

比如发朋友圈这一操作,就存在数据的:

 

  • 同步操作,如更新DB

  • 异步操作,如将朋友圈内容同步给审核系统

 

所以更新完主库后,会将朋友圈ID写入MQ,由Consumer依据ID在从库获取朋友圈信息再发给审核系统。此时若主从DB存在延迟,会导致在从库取不到朋友圈信息,出现异常!

 

图片

主从延迟对业务的影响示意图

 

 
3.避免主从复制的延迟

 

这咋办呢?其实解决方案有很多,核心思想都是 尽量不去从库查询数据。因此针对上述案例,就有如下方案:

 

1)数据冗余

 

可在发MQ时,不止发送朋友圈ID,而是发给Consumer需要的所有朋友圈信息,避免从DB重新查询数据。

 

推荐该方案,因为足够简单,不过可能造成单条消息较大,从而增加消息发送的带宽和时间。

 

2)使用Cache

 

在同步写DB的同时,把朋友圈数据写Cache,这样Consumer在获取朋友圈信息时,优先查询Cache,这也能保证数据一致性。

 

该方案适合新增数据的场景。若是在更新数据场景下,先更新Cache可能导致数据不一致。比如两个线程同时更新数据:

 

  • 线程A把Cache数据更新为1

  • 另一个线程B把Cache数据更新为2

  • 然后线程B又更新DB数据为2

  • 线程A再更新DB数据为1

 

最终DB值(1)和Cache值(2)不一致!

 

3)查询主库

 

可以在Consumer中不查询从库,而改为查询主库。

 

使用要慎重,要明确查询的量级不会很大,是在主库的可承受范围之内,否则会对主库造成较大压力。

 

若非万不得已,不要使用该方案。因为要提供一个查询主库的接口,很难保证其他人不滥用该方法。

 

主从同步延迟也是排查问题时容易忽略。有时会遇到从DB获取不到信息的诡异问题,会纠结代码中是否有一些逻辑把之前写入内容删除了,但发现过段时间再去查询时又能读到数据,这基本就是主从延迟问题。所以,一般把从库落后的时间作为一个重点DB指标,做监控和报警,正常时间在ms级,达到s级就要告警。

 

主从的延迟时间预警,那如何通过哪个数据库中的哪个指标来判别? 

 

在从从库中,通过监控show slave status\G命令输出的Seconds_Behind_Master参数的值判断,是否有发生主从延时。这个参数值是通过比较sql_thread执行的event的timestamp和io_thread复制好的 event的timestamp(简写为ts)进行比较,而得到的这么一个差值。 

 

但如果复制同步主库bin_log日志的io_thread线程负载过高,则Seconds_Behind_Master一直为0,即无法预警,通过Seconds_Behind_Master这个值来判断延迟是不够准确。其实还可以通过比对master和slave的binlog位置。

 

三、如何访问DB

 

使用主从复制将数据复制到多个节点,也实现了DB的读写分离,这时,对DB的使用也发生了变化:

 

  • 以前只需使用一个DB地址。

  • 现在需使用一个主库地址,多个从库地址,且需区分写入操作和查询操作,再结合“分库分表”,复杂度大大提升。

 

为降低实现的复杂度,业界涌现了很多DB中间件解决DB的访问问题,大致分为:

 

 
1.应用程序内部

 

如TDDL( Taobao Distributed Data Layer),以代码形式内嵌运行在应用程序内部。可看成是一种数据源代理,它的配置管理多个数据源,每个数据源对应一个DB,可能是主库或从库。当有一个DB请求时,中间件将SQL语句发给某个指定数据源,然后返回处理结果。

 

优点:

 

  • 简单易用,部署成本低,因为植入应用程序内部,与程序一同运行,适合运维较弱的小团队。

 

缺点:

 

  • 缺乏多语言支持,都是Java语言开发的,无法支持其他的语言。版本升级也依赖使用方的更新。

 

 
2.独立部署的代理层方案

 

如Mycat、Atlas、DBProxy。

 

这类中间件部署在独立服务器,业务代码如同在使用单一DB,实际上它内部管理着很多的数据源,当有DB请求时,它会对SQL语句做必要的改写,然后发往指定数据源。

 

优点:

 

  • 一般使用标准MySQL通信协议,所以可支持多种语言

  • 独立部署,所以方便维护升级,适合有运维能力的大中型团队

 

缺点:

 

  • 所有的SQL语句都需要跨两次网络:从应用到代理层和从代理层到数据源,所以在性能上会有一些损耗。

 

四、总结

 

可以把主从复制引申为存储节点之间互相复制存储数据的技术,可以实现数据冗余,以达到备份和提升横向扩展能力。

 

使用主从复制时,需考虑:

 

  • 主从的一致性和写入性能的权衡:若保证所有从节点都写入成功,则写性能一定受影响;若只写主节点就返回成功,则从节点就可能出现数据同步失败,导致主从不一致。互联网项目,一般优先考虑性能而非数据的强一致性。

  • 主从的延迟:会导致很多诡异的读取不到数据的问题。

 

很多实际案例:

 

  • Redis通过主从复制实现读写分离

  • Elasticsearch中存储的索引分片也可被复制到多个节点

  • 写入到HDFS中,文件也会被复制到多个DataNode中

 

不同组件对于复制的一致性、延迟要求不同,采用的方案也不同,但设计思想是相通的。

 

FAQ

 

若大量订单,通过userId hash到不同库,对前台用户订单查询有利,但后台系统页面需查看全部订单且排序,SQL执行就很慢。这该怎么办呢?

 

由于后台系统不能直接查询分库分表的数据,可考虑将数据同步至一个单独的后台库或同步至ES。

 

作者丨小爬
来源丨easemob.com/news/7093
dbaplus社群欢迎广大技术人员投稿,投稿邮箱:editor@dbaplus.cn
最新评论
访客 2024年04月08日

如果字段的最大可能长度超过255字节,那么长度值可能…

访客 2024年03月04日

只能说作者太用心了,优秀

访客 2024年02月23日

感谢详解

访客 2024年02月20日

一般干个7-8年(即30岁左右),能做到年入40w-50w;有…

访客 2023年08月20日

230721

活动预告